You will rarely do something perfectly. While you are perfecting your solution, the situation might already have changed. In times where we in a higher degree are faced with new challenges and obstacles, we have a lot to gain from agile mindsets and an iterative approach to problem-solving. So if you have not already started to settle for ”good enough”, or learned that ”failing fast” is an accelerator for learning and improvement, now is the time! 

Let’s start from the beginning.

What is fail fast?

Fail fast is the principle of freely experimenting and learning while trying to reach the desired result. By quickly finding the failures, you can catapult learning and optimize solutions instantly to reach your goal. 

The concept of fail fast is strongly connected to the Agile methodology. Agile derives from the software development world, more specifically the agile manifesto written in 2001. The Agile methodology relies on 12 principles, such as ”Our highest priority is to satisfy the customer through early and continuous delivery of valuable software.” The principles all revolve around rapid development, adaptability, and continuous improvement. Read more about Agile methods here.

Why fail fast? 

The real aim of fail fast principles is not to fail as fast and often as possible, but to be iterative. When experimenting and innovating, we must be open to failures. It is what we do after the failures, in the iterative process, that matters. Continuous learning equals continuous improvement.

The concept of failing fast has had its fair amount of doubters and has received a whole bunch of criticism. Often because fail fast is put in a phrase like ”fail fast, fail often”. When talking about this, there is a danger in relying too much upon the later part ”fail often”. Sure, failure is inevitable when experimenting, but no one wants to fail often. The important thing is that the lessons learned from failing are utilized to improve your next attempt.

In Agile methodology, the speed of execution is more important than perfect execution. In today’s complex business environment, the first solution providing value is often the best, at least as a start. From there you can scale up and learn from the journey so far. The risk of failure should never stop you or your team from experimenting and trying new things.

How to fail fast, without failing the process.

To get the most out of the fail fast principle, there are a few important things to remember.

1. Take intelligent risks.

Just because the idea of failing fast is liberating, it still does not free us from the consequences our failures might generate. Some problems and challenges still require strategic planning and careful execution. Taking bold risks just because you can is neither smart nor innovative, it’s just dangerous.

2. Never fail to learn.

This can’t be stressed enough. By learning from mistakes, mistakes become gifts. Take time to really reflect over the positive and the negative sides of the experiment, and make sure to adapt the next iteration of your solution according to the new knowledge. Without changing something in your next swing at the challenge, the outcome will still be the same.

3. Start trying and don’t stop.

Don’t spend hours perfecting your solution, try it as soon as you consider it ”good enough”. This might be harder than it seems and doesn’t fit all projects, but the sooner a solution can be tested, the sooner it can be improved. Innovation does not come from failing as fast as possible and then giving up, it comes from a relentless motivation to keep on trying, trying again and learning from what didn’t work the first, second or even the seventh time.


ERP-molnlyft på 15 veckor och minskade driftkostnader med 10 procent

Sedan 2018 har Insula en affärssystemslösning från Infor, M3 Food & Beverage, som har förkonfigurerade inställningar anpassade till livsmedelsindustrin. Insula har nu tillsammans med Elvenite lyft affärssystemet till Infor Cloud Suite, som bygger på en molnlösning för flera hyresgäster.

läs mer
Machine learning inom livsmedelsindustrin: En game changer för långsiktiga försäljningsprognoser

Machine learning inom livsmedelsindustrin: En game changer för långsiktiga försäljningsprognoser

Tänk att kunna se in i framtiden. Att veta hur mycket av din vara som kommer säljas så att du inte behöver baka mer säg, bröd, än nödvändigt. Sen några år tillbaka fokuserar vi mycket på Machine Learning. Vi har lagt många timmar på att prata med våra kunder för att förstå hur livsmedelsbranschen kan dra nytta av denna fantastiska teknik. Vad har vi kommit fram till? Jo, att en av de absolut vanligaste utmaningarna, problemet att kunna förutspå något över tid, faktiskt går att lösa med hjälp av just Machine Learning.

läs mer
Data science inom livsmedelsindustrin – så börjar du.

Data science inom livsmedelsindustrin – så börjar du.

Data Science har potential att revolutionera livsmedelsindustrin. Genom att fatta datadrivna beslut kan man öka intäkterna och förbättra såväl effektiviteten som kundupplevelsen. I den här artikeln går vi, steg för steg, igenom hur organisationer inom livsmedelsindustrin kan komma igång och börja använda sig av data science. Det här bör man tänka på när man ger sig ut på denna resa.

läs mer